Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Eur J Pharmacol ; 898: 173977, 2021 May 05.
Article in English | MEDLINE | ID: covidwho-1101202

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the pandemic coronavirus disease 2019 (Covid-19) has claimed more than a million lives. Various in silico, in vitro, and in vivo studies are being conducted to understand the effect of SARS-CoV-2 on the cellular metabolism of humans and the various drugs and drug-targets that may be used. In this review, we discuss protein-protein interactions (PPIs) between viral and human proteins as well as viral targets like proteases. We try to understand the molecular mechanism of various repurposed antiviral drugs against SARS-CoV-2, their combination therapies, drug dosage regimens, and their adverse effects along with possible alternatives like non-toxic antiviral phytochemicals. Ultimately, randomized controlled trials are needed to identify which of these compounds has the required balance of efficacy and safety. We also focus on the recent advancements in diagnostic methods and vaccine candidates developed around the world to fight against Covid-19.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , COVID-19 Vaccines , SARS-CoV-2 , Antiviral Agents/adverse effects , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Testing , Drug Repositioning , Humans , Plants, Medicinal , SARS-CoV-2/immunology
2.
Microsc Res Tech ; 83(12): 1623-1638, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-695947

ABSTRACT

Severe Acute Respiratory Syndrome Coronaviruses (SARS-CoVs), causative of major outbreaks in the past two decades, has claimed many lives all over the world. The virus effectively spreads through saliva aerosols or nasal discharge from an infected person. Currently, no specific vaccines or treatments exist for coronavirus; however, several attempts are being made to develop possible treatments. Hence, it is important to study the viral structure and life cycle to understand its functionality, activity, and infectious nature. Further, such studies can aid in the development of vaccinations against this virus. Microscopy plays an important role in examining the structure and topology of the virus as well as pathogenesis in infected host cells. This review deals with different microscopy techniques including electron microscopy, atomic force microscopy, fluorescence microscopy as well as computational methods to elucidate various prospects of this life-threatening virus.


Subject(s)
Computational Biology/methods , Coronavirus Infections/virology , Microscopy/methods , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/ultrastructure , Animals , Chlorocebus aethiops , Host-Pathogen Interactions , Humans , Microscopy/classification , Microscopy, Atomic Force , Microscopy, Electron , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Severe acute respiratory syndrome-related coronavirus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL